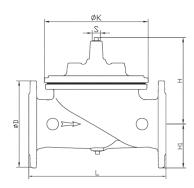
PN 10/16/25 Atm DN 50/600 mm

Hydraulic Valves Hydromaf

200 Pressure reducing valve

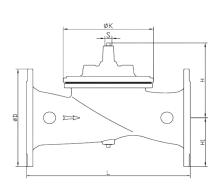
It maintains a constant pressure independently downstream variations.

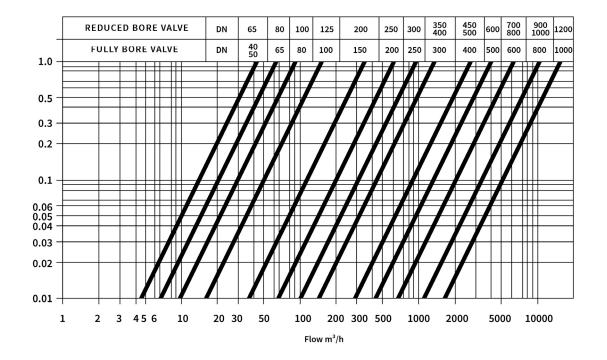
Avda dels Transports, Sector 13 Parcela 45A, 46394, Ribarroja del Turia Valencia, España


Phone: 96 166 70 35 Fax: 96 166 90 89 www.mafusa.net mafusa@mafusa.net

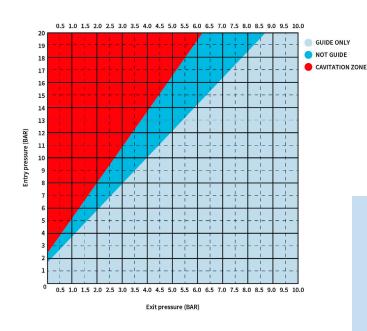
Dimensions

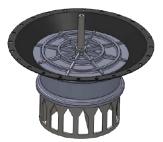
Main Valve - Fully Bore Type


DN	L	н	H1*	к	S	Peso (Kg)
40S-1 ½"	230	139	55	173	3/8"	13
50S-2"	230	139	55	173	3/8"	13
50	230	139	85	173	3/8"	14
65	290	159	95	198	3/8"	19
80	310	179	102	226	3/8"	23
100	350	214	112	265	3/8"	32
150	480	333	145	351	1/2"	68
200	600	407	72	436	3/4"	125
250	730	476	205	524	1"	200
300	850	526	232	606	1"	260
400	1100	624	292	741	1½"	560
500	1250	720	360	1002	2"	880
600	1450	835	425	1308	2"	1300
800	1850	1110	515	1755	2"	1950
1000	2250	1350	630	2231	2"	2456



Main Valve - Reduced Bore Type


	I	1	I	I	I.	I
DN	L	н	H1*	К	S	Peso (Kg)
65	230	139	95	173	3/8"	21
80	290	159	102	198	3/8"	28
100	350	179	112	226	3/8"	39
125	350	214	127	265	3/8"	56
150	480	214	145	265	3/8"	96
200	600	333	172	351	1/2"	162
250	730	407	205	436	3/4"	230
300	850	476	232	524	1"	285
350	850	526	262	606	1"	435
400	1100	526	292	606	1"	590
450	1100	624	325	741	11/2"	750
500	1100	624	360	741	11/2"	1090
600	1250	720	425	1002	2"	1200
700	1450	835	460	1308	2"	1420
800	1450	835	515	1308	2"	1510
900	1850	1110	570	1755	2"	2185
1000	1850	1110	630	1755	2"	2268
1200	2250	1350	750	2231	2"	2855



Anti-cavitation Kit

The anti-cavitation mold has been designed for applications where there is a high damage potential for damage from cavitation, providing an optimum internal pressure control through a unique anti-cavitation trim design and relieving the damage of cavitation with multi-stage pressure reducing.

Standards and specifications

USE	STANDARD	CONNEXION	
Use: Water Temp: -41° - 220 ° C	Standard Designs EN 1074-5 BS EN 1567	Face to face EN 558-1 / ISO 5752 Serie 1	
Pressure Range: ISO EN PN10, PN16, PN25 ANSI CL125/150/300 JIS 10K/16K AS Table D, E	Standard Test ISO 5208 / EN 12266-1	Flange Drilling EN 1092-2 ISO 7005-2	

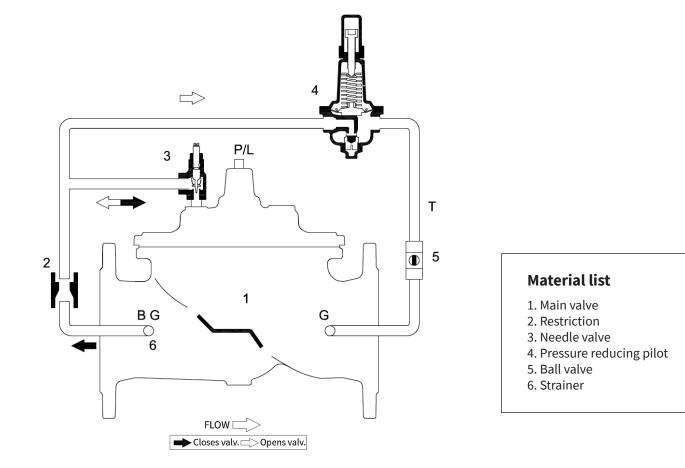
Product description

Basic valve, reducing pilot 2W stainless steel, stainless steel needle valve, 2 manometers.

Operation

The Model 200 Pressure Reducing Valve automatically reduces a higher inlet pressure to a steady lower downstream pressure, regardless of changing flow rate and/or varying inlet pressure. This valve is an accurate, pilot-operated regulator capable of holding downstream pressure to a

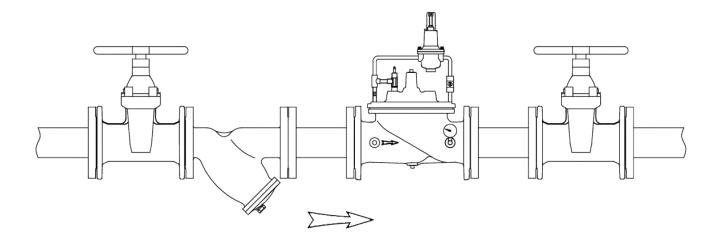
re-determined limit.


When downstream pressure exceeds the pressure setting of the control pilot, the main valve and pilot valve close drip-tight.

Setting

1° Starting regulation with needle valve open three complete turns and the pilot screw completely loosened.
2° Start pushing the screw in the clockwise direction, until observe that begins to raise the pressure downstream and continue to the proper pressure, making brief stops at each turn and allowing the pipe gets filled smoothly.
3° Adjust opening or closing of the needle valve to regulate the switching speed, repeating if necessary 2nd step.
4° Tighten the lock nut to prevent des-setting pilot.

Note: In case of losing control of the valve, we can close it manually closing the ball valve. It is located downstream of the pilot.



Options

- Position indicator (sight glass) or limit switch
- Independent needle valve opening and closing
- Anticavitation system

Typical installation

For carrying out the setting and maintenance of hydraulic valve, it is essential the installation of the following items:

1. Shutoff valves before and after hydraulic, as shown in the graph. With them we can also simulate various flow conditions for regulation and attend the slow filling of the pipe.

2. The cast iron Y strainer prevents the penetration of any element in the hydraulic valve that difficult it's proper functioning. Much of the anomalies are given by the absence of this element.

3. Cast iron air valve. It is highly recommended installing a suction cup water under the outlet. This will allow air to escape during filling or getting in when the reducing pressure valve closes the flow.

It's very important to check that the diameter of the valve is adjusted to the ranges of actual flows and never oversizing the valve.