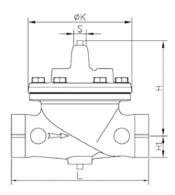

T Válvulas Hidráulicas

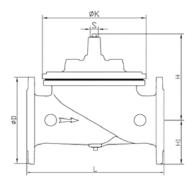
HYDROMAF

512

Válvula sostenedora de presión y control de nivel

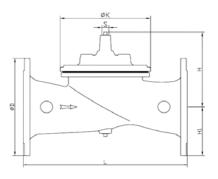
Realiza la función de llenado de depósito, manteniendo el nivel entre un máximo y un mínimo, impidiendo una caída de presión y velocidad excesivas aguas arriba.

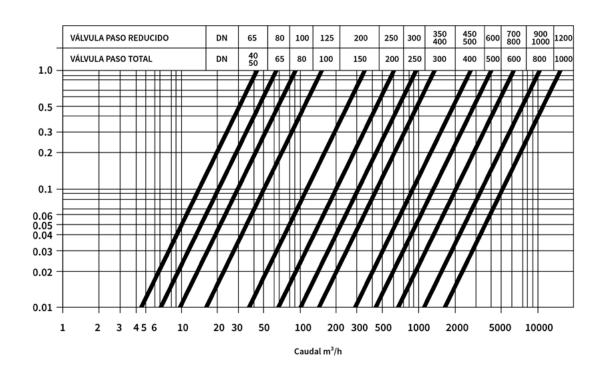




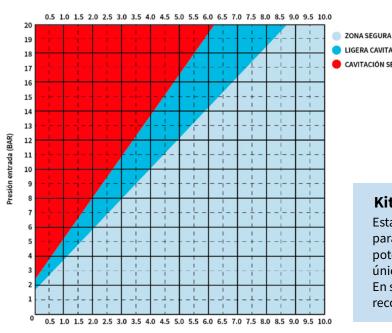
Dimensiones

Válvula Hidráulica Paso Total


DN	L	Н	H1*	K	S	Peso (Kg)
40S-1 ½"	230	139	55	173	3/8"	13
50S-2"	230	139	55	173	3/8"	13
50	230	139	85	173	3/8"	14
65	290	159	95	198	3/8"	19
80	310	179	102	226	3/8"	23
100	350	214	112	265	3/8"	32
150	480	333	145	351	1/2"	68
200	600	407	72	436	3/4"	125
250	730	476	205	524	1"	200
300	850	526	232	606	1"	260
400	1100	624	292	741	1½"	560
500	1250	720	360	1002	2"	880
600	1450	835	425	1308	2"	1300
800	1850	1110	515	1755	2"	1950
1000	2250	1350	630	2231	2"	2456



Válvula Hidráulica Paso Reducido


DN	L	н	H1*	K	s	Peso (Kg)
65	230	139	95	173	3/8"	21
80	290	159	102	198	3/8"	28
100	350	179	112	226	3/8"	39
125	350	214	127	265	3/8"	56
150	480	214	145	265	3/8"	96
200	600	333	172	351	1/2"	162
250	730	407	205	436	3/4"	230
300	850	476	232	524	1"	285
350	850	526	262	606	1"	435
400	1100	526	292	606	1"	590
450	1100	624	325	741	1½"	750
500	1100	624	360	741	1½"	1090
600	1250	720	425	1002	2"	1200
700	1450	835	460	1308	2"	1420
800	1450	835	515	1308	2"	1510
900	1850	1110	570	1755	2"	2185
1000	1850	1110	630	1755	2"	2268
1200	2250	1350	750	2231	2"	2855

Pérdidas de carga

Gráfica de cavitación

Kit anti-cavitación

LIGERA CAVITACIÓN

CAVITACIÓN SEVERA

Esta solución anti-cavitación se ha desarrollado para aquellas situaciones donde existe un riesgo potencialmente alto de cavitación, planteando en una única solución una reducción en etapas de la presión. En situaciones de reducción excesiva prolongada es recomendable colocar dos reductoras en serie.

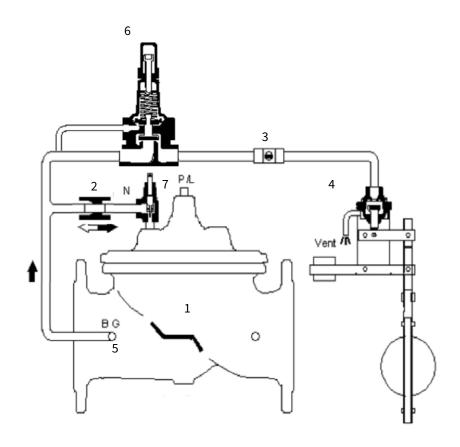
Presión salida (BAR)

Normativa y especificaciones

MEDIO	ESTANDAR	CONEXIÓN	
Medio: Agua Temp: -41° - 220°C	Diseños estandar EN 1074-5 BS EN 1567	Cara a Cara EN 558-1 / ISO 5752 Serie 1	
Rango de presiones: ISO EN PN10, PN16, PN25 ANSI CL125/150/300 JIS 10K/16K AS Tabla D, E	Ensayo Estandar ISO 5208 / EN 12266-1	Taladro de Bridas EN 1092-2 ISO 7005-2	

+ Descripción del producto

Válvula Básica, piloto sostenedor inox 2W, válvula de aguja inox, piloto flotador doble nivel 2/3W, manómetro.

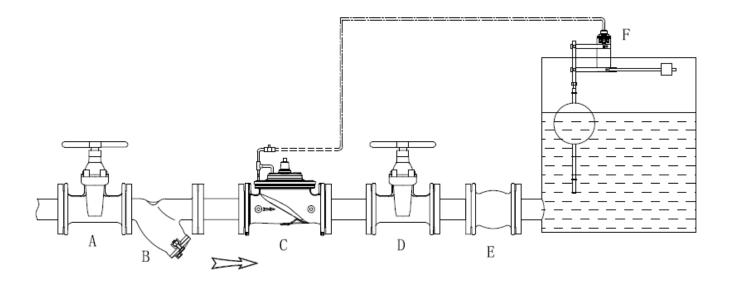

+ Funcionamiento

La válvula garantiza que pese a la bajada del nivel del depósito, la válvula no se abrirá completamente, sino que mantendrá una caída de presión y velocidad del flujo moderadas en la red con el fin de evitar daños en la válvula, oscilaciones altas de presión en la red y posibles golpes de ariete en el cierre. Este esquema es aplicable también a la válvula de flotador modulante, aunque por ser un cierre progresivo, no suele ser necesario.

Puesta a punto

- 1º Comprobar el sentido de paso del flujo con la flecha de la válvula.
- 2º Abrir dos vueltas la válvula de aguja (caso de llevarla) y abrir las válvulas de esfera
- **3º** Apretar el tornillo del piloto al máximo, con el fin de que la válvula permanezca cerrada.
- 4º Abrir las compuertas de aguas arriba (antes de la válvula) para comprobar que la válvula cierra completamente.
- **5º** Comprobamos ahora la presión estática de la red y comenzamos a aflojar el tornillo del piloto sostenedor, hasta lograr la presión dinámica en red deseada
- *Advertencia: "comprobar que el salto de presión de aguas arriba a aguas debajo de la válvula está dentro de los parámetros admisibles en la gráfica de cavitación..
- **6º** Realizar varias veces, con cuidado, cierres mediante la boya para comprobar que los cierres se producen dentro de los parámetros aceptables. Si fuesen muy bruscos, podemos suavizarlos estrangulando un poco la válvula de aguja para que el cierre sea más lento.

Diagrama de control


- 1. Válvula Principal
- 2. Restricción
- 3. Válvula de esfera
- 4. Piloto flotador 2/3 W
- 5. Filtro y te de derivación
- 6. Piloto Sostenedor
- 7. Válvula de aguja

Configuración opcional

- B. Válvula de bola descarga
- G. Manómetro
- N. Válvula de aguja
- P. Indicador de posición
- L. Final de carrera

<u>+</u>

Instalación típica

Para poder llevar a cabo la puesta a punto y mantenimiento de una válvula hidráulica, es fundamental la instalación de los siguientes elementos:

- 1. Válvulas de corte antes y después de la hidráulica, tal como se muestra en el gráfico. Con ellas podremos además simular las diversas condiciones de caudal para la regulación y asistir a llenado lento de la tubería.
- **2.** Filtro cazapiedras. Previene que pueda penetrar en la válvula hidráulica algún elemento que impida su correcto funcionamiento. Gran parte de las anomalías vienen dadas por la ausencia de este elemento.

Es muy importante comprobar que el diámetro de la válvula se ajusta a los rangos de caudales reales y nunca sobredimensionar la válvula.

Lista de componentes

- A. Válvula de corte
- B. Filtro
- C. Válvula de Control
- D. Válvula de corte
- E. Manguito antivibratorio
- F. Piloto Flotador doble nivel