+

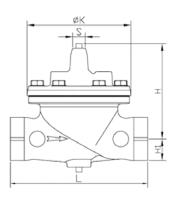
Vannes Hydrauliques

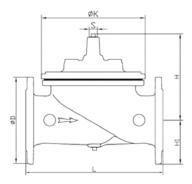
HYDROMAF

536CLD

Vanne amont et detendeur à contrôle electronique C.A. et fermeture superlente

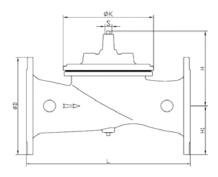
Il remplit la fonction d'électrovanne, avec une fermeture lente et possibilité de régler le temps de fermeture, soutenu par un accumulateur hydropneumatique. Il fonctionne avec deux solénoïdes monostables. Fonction amont aussi

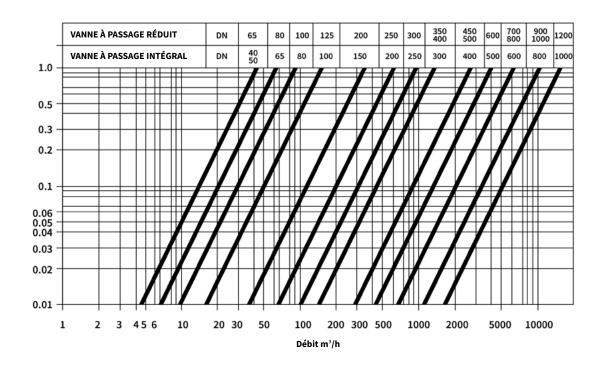




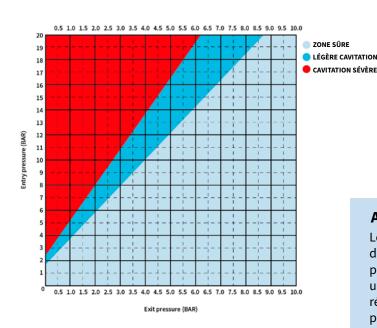
Dimensions

Vanne Hydraulique à Passage Intégral


DN	L	н	H1*	K	s	Poids (Kg)
40S-1 ½"	230	139	55	173	3/8"	13
50S-2"	230	139	55	173	3/8"	13
50	230	139	85	173	3/8"	14
65	290	159	95	198	3/8"	19
80	310	179	102	226	3/8"	23
100	350	214	112	265	3/8"	32
150	480	333	145	351	1/2"	68
200	600	407	72	436	3/4"	125
250	730	476	205	524	1"	200
300	850	526	232	606	1"	260
400	1100	624	292	741	1½"	560
500	1250	720	360	1002	2"	880
600	1450	835	425	1308	2"	1300
800	1850	1110	515	1755	2"	1950
1000	2250	1350	630	2231	2"	2456



Vanne Hydraulique à Passage Réduit


DN	L	н	H1*	K	s	Poids (Kg)
65	230	139	95	173	3/8"	21
80	290	159	102	198	3/8"	28
100	350	179	112	226	3/8"	39
125	350	214	127	265	3/8"	56
150	480	214	145	265	3/8"	96
200	600	333	172	351	1/2"	162
250	730	407	205	436	3/4"	230
300	850	476	232	524	1"	285
350	850	526	262	606	1"	435
400	1100	526	292	606	1"	590
450	1100	624	325	741	1½"	750
500	1100	624	360	741	1½"	1090
600	1250	720	425	1002	2"	1200
700	1450	835	460	1308	2"	1420
800	1450	835	515	1308	2"	1510
900	1850	1110	570	1755	2"	2185
1000	1850	1110	630	1755	2"	2268
1200	2250	1350	750	2231	2"	2855

Pertes de Charge

Diagramme de Cavitation

Anti-cavitation Kit

Le Kit est une solution anti-cavitation qui a été développé pour les situations où il y a un risque potentiellement haute de cavitation. Il permet une réduction en étapes de la pression. En cas de réduction excessive prolongée c'est nécessaire placer deux vannes de réduction en série.

Réglementations et Spécifications

USAGE	STANDARD	CONNECTION	
Use: Eau Temp: -41° - 220°C	Standard Conception EN 1074-5 BS EN 1567	Bride à bride EN 558-1 / ISO 5752 Serie 1	
Pression Rang: ISO EN PN10, PN16, PN25 ANSI CL125/150/300 JIS 10K/16K AS Table D, E	Standard Test ISO 5208 / EN 12266-1	Taraude à bride EN 1092-2 ISO 7005-2	

+ Description du produit

Vanne de base, deux solénoïde avec relais hydraulique 2W inox, pilote support 2w inox, 2 vannes à aiguille, 3 manomètres, chaudron, 5 vannes à sphère, purgeur et petit raccord.

+ Fond

Fonctionnement

Dans cette vanne nous utilisons le pilote support comme moyen pour réaliser une fermeture douce et lente, variant la pression du capteur. Il peut en outre réaliser la fonction de soupape porteuse, bien que cette fonction la remplirait avec un certain retard, puisque toute variation devra d'abord modifier la pression de tout le chaudron, en apportant ou en vidant le volume correspondant. Il intègre également la fonction anti-retour à fermeture rapide, avec une prise directe à la caméra, qui empêche la circulation dans le sens inverse.

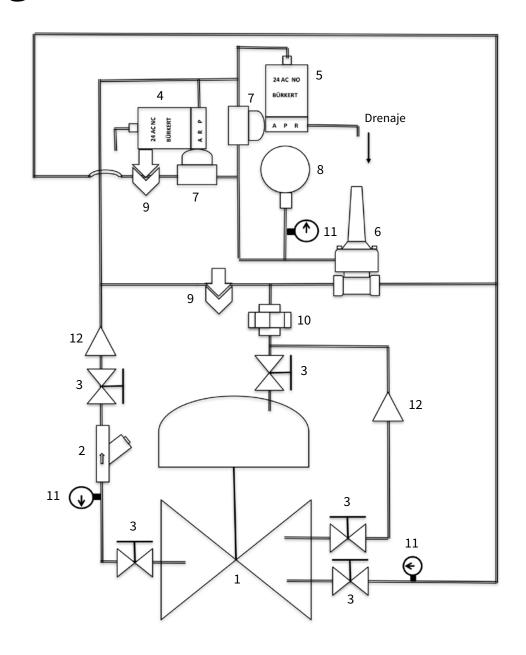
Mise au point

À réaliser en cas de non venue tarée d'usine ou de vouloir la recalibrer.

Avec les vannes à opercule fermées, ouvrir 1,5 tour de la vanne d'aiguille à angle et 0,5 tour de la vanne d'aiguille en ligne (volant bleu), et serrer la vis du pilote amont.

Ouvrir la vanne amont pour que l'hydraulique entre en charge et ouvrir la vanne aval jusqu'à ce que nous entendions que l'eau commence à couler. Dès que la membrane est chargée, la vanne se ferme. Ouvrir légèrement la vanne de fermeture en aval.

Appliquer du courant aux solénoïdes pour amorcer l'ouverture de la vanne


Ouvrir lentement dans le sens contraire des aiguilles d'une montre la vis de réglage du pilote de support jusqu'à ce que nous remarquions que la valve veut ouvrir. À ce stade, nous continuerons à ouvrir jusqu'au point de débit/pression désiré, en vous aidant avec l'ouverture totale de la vanne aval.

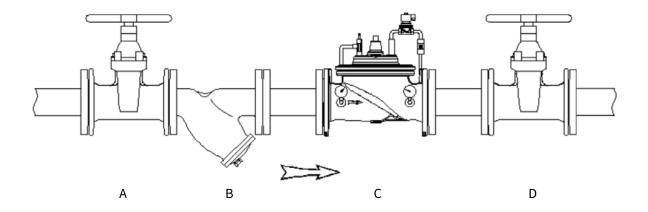
Une fois tarée cette pression / débit, nous retirerons le courant des solénoïdes pour voir comment il draine le chaudron et à quelle vitesse la pression est perdue (voir manomètre du capteur) et chronometrer le temps.

Pour augmenter le temps de fermeture, vous pouvez fermer la vanne à aiguille en ligne avec de petits mouvements et répéter le chronométrage. Ne pas dépasser 2 minutes pour éviter un étranglement excessif avec risque d'obstruction.

+

Diagramme de control

Configuration standard


- 1. Vanne de base.
- 2. Filtre externe.
- 3. Vanne sphérique. (5uds)
- 4. Pilote solénoïde NC.
- 5. Pilote solénoïde NO.
- 6. Pilote detendeur 2W.
- 7. Relais hydraulique 2w(2uds)
- 8. Accumulateur hydropneumatique.
- 9. Vanne à aiguille.(2uds)
- 10. Raccord trois pieces.
- 11. Manomètre.(3uds)
- 12. Vanne dètendeur.

Configuration optionelle

Drainage dans l'atmosphère.

+

Installation Type

- A. Vanne à opercule.
- B. Filtre à tamis.
- C. Vanne solenoïde.
- D. Vanne à opercule.

Pour permetre le réglage et l'entretien d'une vanne hydraulique, il est essentiel d'intalaller les éléments suivants:

- **1.** Vannes à opercule avant et après de la vanne hydraulique, comme le montre le graphique. Avec elles, nous pouvons également simuler les differents conditions de débit poru le réglage et assister le remplissage.
- **2.** Filtre à tamis. Previent l'entrée dans la vanne hydraulique de tout élément qui empêche son bon fonctionnement. La plupart des anomalies sont dues à l'absence de cet élément.
- **3.** Ventouse. Il convient d'utilixer une ventouse aval pour que l'air sort pendant le remplissage et entre quand la vanne ferme. (detendeur)

Il est très important de vérifier que le diamètre de la vanne s'adapte aux plages de débits réels et de ne jamais surdimensionnerla vanne.