十

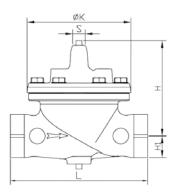
Vannes Hydrauliques

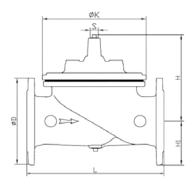
100

Vanne à flotteur modulant simple

Maintient le réservoir plein, ouvrant la vanne quand le niveau d'eau descend.

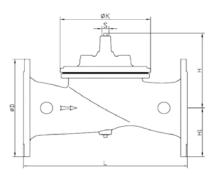
Avda dels Transports, Sector 13 Parcela 45A, 46394, Ribarroja del Turia Valencia, España

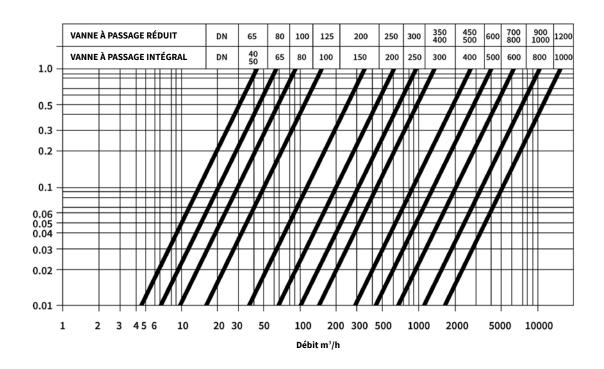

Phone: 96 166 70 35 Fax: 96 166 90 89 www.mafusa.net mafusa@mafusa.net



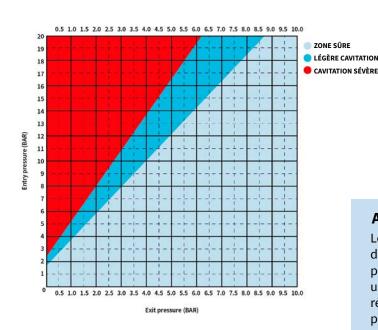
Dimensions

Vanne Hydraulique à Passage Intégral


		1			ı	
DN	L	Н	H1*	K	S	Poids (Kg)
40S-1 ½"	230	139	55	173	3/8"	13
50S-2"	230	139	55	173	3/8"	13
50	230	139	85	173	3/8"	14
65	290	159	95	198	3/8"	19
80	310	179	102	226	3/8"	23
100	350	214	112	265	3/8"	32
150	480	333	145	351	1/2"	68
200	600	407	72	436	3/4"	125
250	730	476	205	524	1"	200
300	850	526	232	606	1"	260
400	1100	624	292	741	1½"	560
500	1250	720	360	1002	2"	880
600	1450	835	425	1308	2"	1300
800	1850	1110	515	1755	2"	1950
1000	2250	1350	630	2231	2"	2456



Vanne Hydraulique à Passage Réduit


DN	L	н	H1*	K	S	Poids (Kg)
65	230	139	95	173	3/8"	21
80	290	159	102	198	3/8"	28
100	350	179	112	226	3/8"	39
125	350	214	127	265	3/8"	56
150	480	214	145	265	3/8"	96
200	600	333	172	351	1/2"	162
250	730	407	205	436	3/4"	230
300	850	476	232	524	1"	285
350	850	526	262	606	1"	435
400	1100	526	292	606	1"	590
450	1100	624	325	741	1½"	750
500	1100	624	360	741	1½"	1090
600	1250	720	425	1002	2"	1200
700	1450	835	460	1308	2"	1420
800	1450	835	515	1308	2"	1510
900	1850	1110	570	1755	2"	2185
1000	1850	1110	630	1755	2"	2268
1200	2250	1350	750	2231	2"	2855

Pertes de Charge

Diagramme de Cavitation

Anti-cavitation Kit

Le Kit est une solution anti-cavitation qui a été développé pour les situations où il y a un risque potentiellement haute de cavitation. Il permet une réduction en étapes de la pression. En cas de réduction excessive prolongée c'est nécessaire placer deux vannes de réduction en série.

Réglementations et Spécifications

USAGE	STANDARD	CONNECTION	
Use: Eau Temp: -41° - 220°C	Standard Conception EN 1074-5 BS EN 1567	Bride à bride EN 558-1 / ISO 5752 Serie 1	
Pression Rang: ISO EN PN10, PN16, PN25 ANSI CL125/150/300 JIS 10K/16K AS Table D, E	Standard Test ISO 5208 / EN 12266-1	Taraude à bride EN 1092-2 ISO 7005-2	

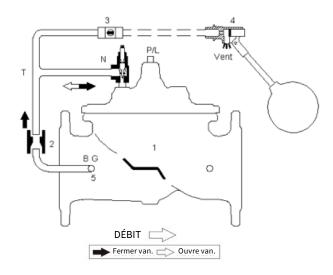
Description du produit

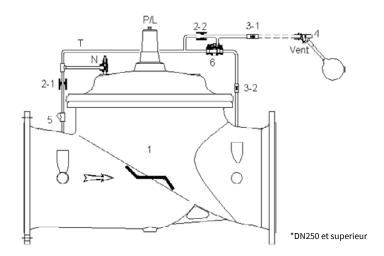
Vanne de base, pilote flotteur 2W, vanne à aiguille et vanne à sphère à partir de DN 250. Accélérateur et orifices de restriction précis.

+

Fonctionnement

La vanne à flotteur modèle 100 est de type modulant et sa fonction est de maintenir le niveau constant dans le réservoir. Il est conçu pour fermer la vanne progressivement que vous atteignez son niveau et ouvrir dès que ce niveau commence à descendre.


Son fonctionnement est entièrement hydraulique et le pilote peut être monté sur la vanne ou à distance.

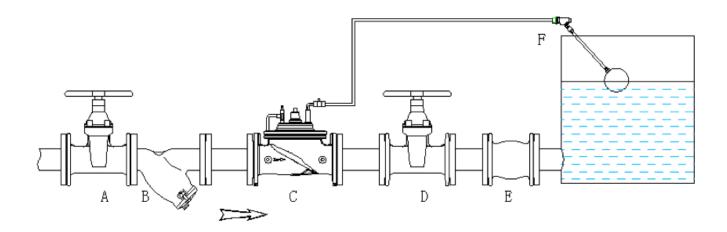


Mise au point

- 1º Ouvrir la vanne à aiguille au moins 3 tours et ouvrir les vannes de sectionnement pour permettre le passage de l'eau.
- 2º Fermer la vanne sphérique située dans le tube du pilote flotteur pour simuler la fermeture par bouée. Contrôler le temps de fermeture.
- 3º Ouvrir la vanne sphérique et vérifier que la vanne fonctionne correctement.
- **4º** Provoquer la fermeture de la vanne par la bouée et vérifier le temps de fermeture.
- **5º** Régler le robinet d'aiguille si nécessaire. Ouvrir un peu en cas de temps de fermeture excessif ou fermer en cas de fermeture brusque ou si nous constatons que la vanne reste en position semi-fermée pendant le remplissage.

Diagramme de contrôle

Configuration standard


- 1. Vanne de base
- 2. Ralentisseur
- 3. Vanne à boule
- 4. Pilote Flotteur
- 5 Filtre
- 6. *Acelerateur(DN250 et superieur)

Configuration optionnelle

- N. Vanne aiguille
- B. Vanne à boule
- G. Manomètre
- P. Indicateur de position
- L. Commutateur de limite

+

Installation Type

Pour permettre la mise au point et l'entretien d'une vanne hydraulique, il est essentiel d'installer les éléments suivants:

- 1. Vanne à opercule avant et après de la vanne hydraulique, comme le montre le graphique. Avec elles, nous pouvons également simuler les différents condiments de débit pour le réglage et assister au remplissage lent du tuyau.
- 2. Filtre à tamis. Prévient la pénétration dans la vanne hidraulique d'un élément qui empêche son bon fonctionnement. La plupart des anomalies sont dues à l'absence de cet élément.
- **3.** Il convient d'utiliser un système anti-vibrations garantissant l'absence d'oscillations dans le pilote.

Il est très important de vérifier que le diamètre de la vanne s'adapte aux plages de débits réels et de ne jamais surdimensionner la vanne.

Liste de composants

- A. Vanne à opercule
- B. Filtre à tamis
- C. Vanne à flotteur
- D. Vanne à opercule
- E. Manchon antivibratoire
- F. Pilote bouée à distance